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SUMMARY

Radiation measurements have been made on open propane-air flames
to find the extent to which radiant flux intensity can be used to
measure the surface area of such flames. For laminar flames of a given
equivalence ratio, intensity changes linearly with both fuel flow rate
and photographically measured surface area. Moreover, the intensity per
unit area of the flame depends on only the equivalence ratio.

Turbulent flame intensity is also proportional to fuel flow rate.
Laminar and turbulent flames at identical conditions of flow rate, equiv-
alence ratio, and burner diameter have approximately the same radiation
intensities. Furthermore, the spectral intensity distributions appear
to be the same for both types of flames, which suggests that the
kinetics may also be the same. These results are entirely compatible
with the current "extended surface" concept of turbulent flame structure;
they do not, however, rule out other theories of the structure of
turbulent flames.

INTRODUCTION

Much of the theoretical and experimental work on hydrocarbon

flames has revolved around the concept of a fundamental burning velocity.
This burning velocity or "flame speed" is defined as the rate of advance
of a reaction zone into a nonturbulent gas stream. In most practical
combustion systems such as furnaces, combustion chambers, and aircraft
power plants, however, the burning gases are highly turbulent. The need
thus arises for a study of the burning velocities of flames in turbulent
gas mixtures.

One common way of expressing the fundamental burning velocity of a
laminar flame is as the quotient of the gas volume flow divided by the
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flame surface area. This ratio would be a convenient method for indi-
cating the fundamental burning velocity in turbulent gas mixtures
except that "surface areas" in such systems are difficult to measure.
Not only are the reaction zones in rapid and continuous motion, but no
certainty exists that the reaction zone or "flame surface" in the
turbulent case is identical to that in the laminar one. Even with
laminar flames, which have been generally accepted as standards, the
burning velocity apparently varies along the surface of an open flame.
The simple ratio mentioned therefore indicates only an average burning
velocity for laminar flames.

Attempts have been made to calculate average burning velocities of
conical turbulent flames burning on tubes. In analogy to the sharp
outline of a laminar flame image in a photographic negative, a locus of
maximum intensity was drawn through the photographic image of a turbulent
flame brush (fig. 1). As in the case of the laminar flame, the average
surface area of the turbulent flame was determined by calculating the
area of the surface of revolution of this maximum intensity outline
(refs. 1 and 2). When this method is used, burning velocities in tur-
bulent gas mixtures appear to be appreciably higher than those in
laminar gas mixtures having the same composition.

Several explanations have been put forth to explain this apparent
difference in burning velocity. These can be grouped into chemical and
physical mechanisms. The chemical explanations assume that influences
such as changes in diffusion rates, transport properties, and temper-
ature distributions have altered the basic kinetics of the reaction and
thus reaction zone thickness and burning velocity (ref. 3). The physical
explanations assume that whereas the reaction zone may be either a
homogeneous sheet or a heterogeneous mixture containing islands of flame,
the reaction kinetics have not changed. They postulate that the tur-
bulent gas flow has wrinkled and folded the flame into a more compact
form. The surface is assumed to have been extended just enough to allow
all the gas flow to pass through some portion of the reaction zone at the
proper laminar burning velocity (refs. 4, 5, 6).

Any valid method of measuring burning velocity in the turbulent gas
streams must not only measure the surface area of the flame but must
also determine whether the flame surface is identical both physically
and chemically to that of an equivalent laminar flame. Photographs of
some simply distorted flames in turbulent gas streams have been measured
and aznalyzed to determine their surface areas (ref. 5), but such a
method is not feasible on the brush flames that usually occur in tur-
bulent gas streams.

The experimentation described in this paper represents an attempt
to utilize the light coming from a flame to determine the surface area
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of the flame. Relative intensity measurements of the total light flux
radiated by the flame in different regions of the visible spectrum were
used as an index of the volume of the radiating reaction zone and thus
"surface" area. Distribution of radiation throughout the flame spec-
trum was studied as a clue to the similarity of the chemistry of com-
bustion in both laminar and turbulent gas streams.

Propane-air flames having equivalence ratios ranging from 0.9 to
1.3 were examined at Reynolds numbers up to 7000 and average flow
velocities up to 65 feet per second. Turbulent burning velocities
calculated by both the average surface method and the surface radiation
method under consideration are compared. The extent of external air
intermixing in turbulent flames is also indicated.

GEOMETRIC ASPECTS OF MEASURING LIGHT FLUX FROM
CLOUDS OF RADIATION SOURCES

When a radiation detector is moved away from a point source of
light, the light flux impinging on the detector will decrease according
t0 the inverse square law. If a point source of light is increased (o
o finite size and the distance from the source to the detector is made
great in comparison with the dimensions of the source, the inverse
square law still holds to a very close approximation (fig. 2). The
source may be of any shape so long as its maximum dimension is small
compared with the distance between the source and the detector. When
this situation exists, appreciable changes can be made in either the
intensity per unit surface area or the total surface area of the source,
and a nominally linear relation will exist between each of these vari-
gbles and the intensity of flux registered by the detector located at
a constant distance from the source. Let a detector be placed at some
relatively large distance from a small spherical homogeneous cloud of
nonabsorbing emitters. This cloud is concentric to and completely con-
tained within the sphere of diameter d in figure 2, which defines the
limit of permitted error in the inverse square relation. As the radius
of the cloud is changed while both the number of emitters per unit
volume and their individual strengths remain the same, the radiation
intensity at the detector will change linearly with the volume of the
cloud. On the other hand, if the cloud size is fixed and either the
number of emitters per unit volume or the individual emitter strengths
are changed, the detector will then register directly the relative
radiation intensities per unit volume of the cloud. These statements
will hold true for a nonabsorbing cloud of emitters of any arbitrary
size or shape, so long as it remains within the bounds of the limiting
sphere of diameter d.
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The reaction zone of a laminar flame approximates closely the
requirements for the hypothetical cloud of emitters under discussion.
The emitters in the flame are largely the diatomic molecules OH, CH,
CO, and Co. The visible spectrum contains mostly CH, CO, and Cs, and

a disperse cloud of such emitters does not reabsorb appreciably (ref. 7).
Although the distribution of emitters varies through the reaction zone,
the luminous sheet of the flame appears homogenecus at a distance,
expecially if nonfocused radiant flux is measured. Therefore, the
luminous inner cone of a laminar open flame can be thought of as a
homogeneous nonabsorbing constant-thickness sheet of radiating
particles. In this case the flame surface area is a direct measure

of the change in volume of the reaction zone. TFuel flow rate at
constant equivalence ratio is also a measure of the size (i.e., the
volume) of the reaction zone.

APPARATUS AND PROCEDURE
Apparatus

Figure 3 is a diagram of the apparatus used in this investigation.
The basic elements are the two burner tubes, the photomultiplier
detector unit, with a microammeter to register its output, and a fixed
focus box camera for taking direct photographs of the flames. A mirror
was placed as indicated, 24 inches above the burner lip, to turn the
radiation 90° and direct it to the photomultiplier unit. The distance
from the mirror to the photomultiplier tube was 49 inches. This arrange-
ment satisfied two of the primary requirements for applying the prin-
ciples discussed in the previous section. First, by observing the flame
from directly above the burner, the source size was kept as constant as
possible. Second, the distance between the flame and the detector was
kept large enough that the flame could be considered a point source of
radiation.

The camera was mounted to take direct photographs of the flames
from a direction perpendicular to the axis of the flame. A water-
cooled metal burner of 0.536 centimeter inner diameter, equipped with
an annular pilot for holding flames at high gas flow rates, was used to
generate the turbulent flames. To obtain a wide range of laminar
flames for calibration purposes a larger water-cooled unpiloted metal
burner of 1.024 centimeter inner diameter was used. These burners were
mounted 2.5 inches apart at the same fixed. distance from the photo-
multiplier tube and also equidistant from the vertical plane through
the geometric center of its photosensitive surface. At low flow rates
flames were laminar on both burners so that the constancy of the
laminar flame characteristics could be checked on both tubes. C.p.
grade propane was used in all the experiments, and the fuel and air were
metered by calibrated rotameters.



NACA RM E54F29 5

Intensity measurements were taken at two specific regions of the
spectrum by using either a yellow or a blue filter in front of the
photomultiplier tube. Figure 4 shows a comparison of the propane-air
flame spectra with the transmission characteristics of the two filters
and the photomultiplier tube sensitivity. The yellow filter transmits
mainly the C, radiation from the flame, whereas the blue one allows
radiations from CO, CH, and other emitters as well as some from Co to
pass.

Procedure

Intensity measurements. - Measurements were made on a series of
laminar and turbulent flames ranging in equivalence ratio from 0.9 to
1.3 and in total flow rate from 120 to 440 cubic centimeters per second.
Whenever possible, identical composition and total flow rate conditions
were used to generate and measure a laminar flame on the large burner
and a turbulent flame on the small, piloted burner. At low flow rates
laminar flames of the same composition and flow rate were measured on
both burners. Each flame was measured using the blue and the yellow
filters in turn in front of the photomultiplier unit. Three readings
were made for each measurement. During the measurement of the laminar
flames 1t was found that the ratio of intensities using the two filters
depended only on the equivalence ratioc of the flame and not on the gas
flow rate or burner size, sc that this ratio could be used to check
the gas metering system.

Photographic measurement of flame surface areas. - Simultaneously
with intensity data, direct photographs were taken of all the laminar
flames and many of the turbulent flames. Areas of the laminar flames
were calculated from these photographs by using a modification of the
method described in reference 8. A similar procedure was used to
calculate average surface areas of the turbulent flames according to the
ideas expressed in referencec 2 and 3. The details of these calculations
are presented in the appendix, where a discussion of the experimental
error of this work will also be found.

RESULTS
Laminar Flame Intensity Measurements at Different
Flow Rates and Equivalence Ratios
Figures 5 and 6 show that linear relations exist between intensity
and both fuel flow rate and flame surface area for laminar propane-air

flames up to equivalence ratios of 1.3. Equivalence ratios of 1.4 and
1.5 showed the same linear intensity relation with fuel flow, but the
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flames were too unsteady and lacking in tip intensity to be photo-
graphed for the purpose of making surface area measurements of the
flames.

These experimental data for laminar flames on the 1.024 centimeter
diameter tube were limited by the blow-off and flash-back of the flame
at equivalence ratios less than 1.0 and low flows. At high total flows
and richer equivalence ratios, the data were limited by the occurrence
of flame unsteadiness, flame turbulence, or flames too long for the
experimental error size limit imposed by the equipment. Thus the data
represent the total range of data obtainable on the 1.024 centimeter
diameter tube with propane-air mixtures at atmospheric pressure. With-
in these limits the experimental data are compatible with the prin-
ciples of radiation measurement expressed previously. These data are
tabulated in table I.

The photomultiplier unit picks up a small amount of carbon
monoxide radiation from the outer mantle of a flame. Although this
radiation may be a significant part of that passed by the blue filter,
a smaller amount is passed by the yellow filter. The fraction of the
total radiation due to the mantle has not been determined experi-
mentally. In interpreting the linear behavior of the intensity curves
of both the yellow and the blue filters, the effect of the radiation
from the outer mantle was neglected.

Filter Intensity-Ratio Method of Measuring
Equivalence Ratio of Laminar Flames

The comparison of filter intensity curves in either figures 5(a)
and (b) or 6(a) and (b) indicates that the straight lines for a single
equivalence ratio have a different slope for the yellow and the blue
filters. When the ratio of the yellow and the blue filter intensity
data is plotted against equivalence ratio, the curve shown in figure 7
is obtained. The ratio is independent of flow velocity within the
range shown in the curves. The filter ratio is therefore an indicatlion
of the equivalence ratio of the flame.

The curve appears to level off from an equivalence ratio of 1.3
to 1.4 as shown. In addition to the effects of flame temperature and
mixture composition, this leveling-off might be due to the fact that
the richer flames mix with the surrounding air and actually burn at
equivalence ratios of approximately 1.3 even though the flames are
laminar. Burning velocity measurements on such rich flames should be
an index of whether they are burning at the initial premixed equiv-
alence ratio or at some leaner equivalence ratio caused by secondary
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alr entrainment. Such flames are too unsteady to be measured by the
usual methods, however, and some procedure such as the use of the
radiant flux method under discussion must be utilized.

Surface Intensity Variations in Laminar Propane-Air Open Flames

Lean propane-air Bunsen flames appear to have a conlcal envelope
of uniform intensity. As the flames increase in richness above an
equivalence ratio of 1.0, however, the intensity begins to diminish
from the base to the tip of the cone, and the tip thus appears to fade.
At equivalence ratios of 1.2 and higher, the flames become less steady
and greater portions of the tip fade away. In spite of this tip
fading, the relation of intensity to fuel flow and surface area remains
linear for the higher equivalence ratios, as shown in figures 5 and 6.
This linearity may be accounted for by assuming that even though in-
creased gas flow lengthens the flame, the proportional surface inten-
sity distribution remains constant for a given equivalence ratio.

When intensity per unit surface area is calculated, it 1s found
to depend on only fuel-air ratio and not on total gas flow rate. The
variation of the unit area intensity with equivalence ratio does show
the effect of the fading, as indicated by the drop-off in the yellow
and blue filter curves in figure 8. The difference in the shape of
the curves is probably due to the different radiations passed by the
two filters. The yellow filter passes mainly C, radiation and thus

shows an approximately linear relation until tip fading decreases its
over-all average intensity per unit surface area. The blue filter
passes CH, HCO, and CO radiation as well as C, radiation; thus there is

the interaction of variations of intensity with equivalence ratio for
each emitter, as well as decreased intensities per unit area caused by
tip fading. Tip fading, unstable flames that could not be satisfactorily
photographed, and the cut-off at equivalence ratios of 1.3 for the
yellow-blue filter ratio all combined to indicate that the experimental
data beyond equivalence ratios of 1.3 would be less reliable.

When intensity measurements were made on laminar flames seated on
the 0.536 centimeter diameter tube, an anomalous tube effect was dis-
covered in that the intensity readings for this tube were less than the
values for exactly corresponding flames on the 1.024 centimeter tube.
Check measurements made under all experimental conditions of fuel flow
and equivalence ratio revealed that intensity values on the small tube
were about 14 percent less than the corresponding values on the large
tube, and that the difference was constant in all cases. A few experi-
ments were performed with glass burner tubes having inner diameters of
0.577, 0.795, and 1.125 centimeters, and some typical results of these
experiments are compared with the data from the metal burners in
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figure 9. The "tube effect" decreases in magnitude with increasing
diameter and there is an indication that it disappears above a diameter
of 1 centimeter. The intensity variation was not caused by light
absorption for different path lengths of hot gas, for this possibility
was checked by examining flames from the side as well as from above.

No change in the intensity difference was observed. Neither was the
intensity decrease caused by a decrease in the flame surface area,
inasmuch as photographs of laminar flames for identical conditions on
both tubes showed identical flame surface areas. At the present time
no satisfactory explanation can be given for this "tube effect.”
Experimental work has shown that the ratio of corresponding intensities
between any two tubes is a constant, so that intensity data on two
different tubes can be compared directly by using the proper correction
factor. In view of what has been said, the intensity data shown in
figure 8 are plotted for comparison with data on the 0.536 centimeter
diameter tube, although they were taken using the 1.024 centimeter tube.
The correction factor which has been applied to the large tube data is
0.862.

Surface Intensity Measurements for Equivalent
Laminar and Turbulent Flames

By a suitable adjustment of the inlet conditions to the small metal
burner it was possible to generate either a laminar or a turbulent flame
with the same fuel flow and metered equivalence ratio for a limited
range of total gas flow rates. Flame intensity measurements on these
flames are shown in figure 10. The intensities are approximately the
same for corresponding laminar and turbulent flames, with a possible
general increase of about 3 percent for the turbulent over the laminar
flames. The straight lines in figure 10 are drawn through the laminar
data only.

This comparison has been extended in figure 11, wherein the straight
lines represent the laminar flame intensity data from large tube
measurements shown in figure 5. These data (shown in fig. 11 without
data points) have been corrected by the tube factor of 0.862. Thus
they are directly compared in figure 11 with the intensity measurements
which were taken of turbulent flames on the small burner at flow rates
above which no laminar flames were obtainable. In both figures 10 and
11 the turbulent flame intensities are very close to the laminar values
at low and intermediate flow rates; they begin to fall away from the
extended laminar flame curves at the higher flow rates. The data for
turbulent flames are shown in table II.
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DISCUSSION

The radiant flux intensity from laminar flames Of a given equiv-
alence ratio has been found to change linearly with the size of the
reaction zone as measured by either the fuel flow rate or the luminous
surface area of the flame. In addition, the radiant flux intensity
per unit area of a flame does not depend on the size of the reaction
zone but only on the equivalence ratio of the combustible mixture, the
variable which has the most important effect on the number of emitters
per unit volume and on their individual strengths. Thus it has been
demonstrated, within the range of experimental conditions covered, that
radiation measurements can be used to determine the areas of laminar
flames cnce a calibration curve has been obtained.

In the comparison of the radiation intensities of equivalent
laminar and turbulent flames, almost identical values are obtained
from the two types of flame at low and intermediate flow rates. More-
over, the ratio of intensities using the two filters was found to be
the same for the laminar and the turbulent flames in all these cases.
This is an indication that the over-all distribution of emitters is the
same in these equivalent flames, and suggests that the kinetics are
also the same. Turbulent flame intensities start to fall off from the
extrapolated laminar flame curves at high total flow rates as shown in
figures 10 and 11. However, the yellow-to-blue filter intensity ratio
for these turbulent flames was also lower than that for the correspond-
ing laminar flames. This variation indicated that the actual burning
mixture might be leaner than the premixed value. Such an effect may
result from the turbulent gases intermixing with the surrounding air.
The more lean burning mixture could account for most of the intensity
decrease at the higher gas flow rates. No discontinuity in intensity
was apparent as the flames changed from the laminar to the turbulent
region. Even though a tube factor for intensity was found and the
intensity curves tailed off at high gas flow rates, the constancy of
the tube factor for all conditions and the apparent equivalence ratio
compensation for intensity tail-off suggested that the initial prin-
ciples of the radiant flux measurement as postulated for laminar flames
also apply to turbulent flames. This validity is apperent in the curves
of figures 11(a) and 11(b), where no break or discontinuity appears in
the linear portions of the intensity curves as the flames change from
the laminar to the turbulent region.

Up to the present time no satisfactory method of measuring the
true surface area (assuming that it exists) of a turbulent flame has
been developed. The "extended surface" concept of the structure of a
turbulent flame implies that the flame does have a definite surface
area and assumes the reaction zone thickness to be the same as that of
a laminar flame (refs. 4, 5, and 6). The radiation principles already
verified for laminar flames can therefore be applied to this type of
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turbulent flame. Under the assumptions of the "extended surface"
idea, the turbulent flame intensity measurements can be used to cal-
culate the true areas of these flames by employing the plots of
figure 8 (intensity per unit area against equivalence ratio) as
calibration curves. The turbulent flame speeds calculated from these
radiation surface areas can then be compared with the data shown in
figure 12, which is a plot of laminar flame speed against equivalence
ratio for a variety of laminar Reynolds numbers.

The laminar surface areas used to obtain the flame speeds were
calculated from flame photographs as described in the appendix. Some
variation exists in the data for the large and the small tubes at the
higher equivalence ratios, but this variation is at most a 5 percent
decrease in propagation velocity for the small tube. The difference
may be apparent rather than real, due to some aerodynamic effect in the
long thin flames of the small tube, since the lower equivalence ratio
flame speeds are the same for both tubes. There should be no appreci-
able difference in flame speeds measured on 0.500 inch and 0.25 inch

tubes (ref. 8).

When the frustrum method is used to calculate the surface areas
of turbulent flames as outlined in the appendix, the burning velocities
vary with Reynolds number as shown in figure 13. Similar results have
been found by others (refs. 1, 2, and 4).

Figure 14 presents the results of calculating turbulent burning
velocities using flame surface areas obtalned from the radiation
intensity measurements as suggested. For the flames at high flow rates
the equivalence ratio of the burning mixture was taken as the value
indicated by figure 7 on the basis of the observed yellow-to-blue filter
intensity ratio. These burning velocities are approximately equal to
the corresponding laminar velocities and, moreover, do not depend on
Reynolds number (more exactly, gas flow rate).

The present investigation has not found a method of distinguishing
among the different concepts of the structure of turbulent flames. If,
for example, the small-scale distortions that appear in a turbulent
flame front cause local variations in the burning velocity, perhaps as
a result of preheating the combustible mixture, the resultant extended
flame area would be less than the corresponding laminar flame area.

If, on the other hand, as indicated in reference 3 the turbulent flame
becomes a "homogeneous" reaction zone in which the chemistry is
entangled with the turbulent mixing rate, the manner of interpreting
flame radiation intensities is not clear. A study of the effect of gas
inlet temperature on the luminosities of laminar flames and of the dilu-
tion of the unburned gas by combustion products may aid in resolving
these possibilities.
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The answer to the question of whether a small surface element of
a turbulent flame is chemically and physically the same as that of a
corresponding laminar flame will help determine the structure of tur-
bulent flsmes. The fact that both intensities and filter intensity
ratios for several pairs of corresponding flames are equal is the most
significant evidence obtained in this work and helps to answer this
question in the affirmative. Although this evidence, in addition to
the caleulations shown in figure 14, lends support to the idea that
the two types of flamel surface are similar, it does not exclude other
concepts of the structure of a turbulent flame; for example, that the
reaction zone of this type of flame may be a thickened homogeneous zone.
However, it is very unlikely that the different temperatures and con-
centrations which would result from a thickened homogeneous zone would
give rise to the identical spectral distribution of intensity found for
the laminar flame. The experimental technique developed in this work
may be used to study and compare more exactly the properties of the
surfaces of laminar and turbulent flames by employing an optical
system to focus locally on regions of both types of flame. One might,
in addition, use a monochromator to study the variation of individual
emitter distribution over a given flame surface and also the effect of
changing inlet gas temperature on this distribution.

SUMMARY OF RESULTS

Radiant flux intensity measurements were made of laminar and
turbulent propane-air flames between equivalence ratio limits of 0.9
and 1.3 for Reynolds numbers up to 7000. The following results were
obtained using a 1.024 centimeter diameter burner for laminar flames
and a 0.536 centimeter diameter burner for both laminar and turbulent
flames:

1. At a given equivalence ratio the radiant flux intensity of
laminar flames is directly proportional to fuel volume flow rate.

2. At a given equivalence ratio the radiant flux intensity of tur-
bulent flames is directly proportional to fuel volume flow rate.

3. At a given equivalence ratio the radiant flux intensity of
laminar flames is directly proportional to the photographically meas-
ured surface area of the flame.

4. Laminar and turbulent flames of identical composition, flow
rate, and burner diameter have almost the same radiation intensities.
There is no discontinuity of the linear intensity curves in passing
from the laminar to the turbulent region.
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5. These results are obtained when the radiation intensity is
measured with either a yellow filter or a blue filter ahead of the
radiation detector.

6. The ratio of the radiant flux intensities measured using the
yellow and the blue filters appears to depend on only the equivalence
ratio for laminar flames. This statement holds true for turbulent
flames at low and intermediate flow rates.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, June 23, 1954



NACA RM E54F29 13

APPENDIX - CALCULATIONS

Measurement of flame surface area. - In the case of the sharply
defined laminar flames, an enlarged photograph of the flame was divided
into a number of trapezoids, the slant-heights of which were straight
line segments of the outer edge of the luminous zone. The surface area
of each section of the flame so generated was calculated by considering
it to be a frustum of a right circular cone. The tip of the flame was
treated as a hemisphere.

The average surface areas of the rapidly fluctuating turbulent
flames were calculated by first drawing a grid across an enlarged photo
graph of the flame. Along each horizontal line across the flame, the
points of maximum intensity of the flame zone were visually estimated
and marked. These points were then connected by straight lines along
the flame perimeter, thus defining its average surface cross section
except for the tip, which could then be roughly estimated by construct-
ing an isosceles triangle on the top trapezoid. The average flame area
was then calculated as for the laminar flames.

This technique was checked for both a laminar and a turbulent flame
in one case by using a densitometer to plot the envelope of maximum
brightness in addition to estimating it visually. The two methods gave
essentially the same results for the laminar flame and differed by less
than 3 percent for the turbulent flame, an agreement that was well within
the expected experimental error for this type of measurement.

Experimental error. - The sources of error in the experimental
results lie in (a) the gas metering system, (b) the photomultiplier tube,
(c) the photographic surface area measurements, and (d) the pilot flame
for the turbulent flames. A check on the reproducibility of the inten-
sity measurements for given flow-meter settings was maintained by meas-
uring the intensity of a "standard" laminar flame several times during
every period of work. To determine the effect of the small annular
pilot on the small tube flame intensities, a given flame was measured
with minimum and maximum possible pilot flames. For the latter case,
the intensity was never increased more than 3 percent over the value
at minimum pilot size. Usually the pilot was kept at an intermediate
size to minimize its effect. Several photographic surface area meas-
urements on a given laminar flame showed a deviation from the average

of +3 percent.

The intensity measurements on both the laminar and turbulent flames
also gave a deviation from the mean of 43 percent; this value is thus
given as a measure of the precision of all the experimental data re-
ported herein.
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TABLE I. - FLAME SPEED AND RADIATION DATA FOR LAMINAR FLAMES

Exper- Tube [Metered| Fuel |Total |Flame |Flame |Flame radia- |Radiation |Average
iment | diam-|equiv- flow, | flow, |surface|speed, |tion intensity,intensity|intensity
eter, jalence |cu cm/ cu cm/ area, cm/sec pamp ratio, ratio at
cm raﬁ;o, sec sec | sq cm NYolloy | Blue Y/B constant
filter | filter @
la |1.024| 0.80 3.2 96.2 3.66 | 26.28| 0.15 0.33 0.455 0.455
2a [1.024| 0.90 4.6 127.6 3.97 32.14| 0.42 0.84 0.500
3a | 1.024 .90 5.5 152.6| 5.02 30.40 .49 .97 -505 0.504
4a [1.024 -90 6.4 177.5| 5.81 | 30.55 .56 1-11 .505 :
Sa 11.024 .90 7.3 | 202.5 6.73 | 30.09 .63 1.25 .504
6a |1.024 1.00 5.1 | 126.7| 3.61 | 35.10| 0.69 1.23 0.561
7a |1.024 1.00 6.1 | 151.5{ 4.31 | 35.15 .88 1.55 .568
Ba |1.024| 1.00 7.1 | 176.4| 5.09 34.66 .98 1.74 .563
9a [1.024 1.00 7.7 190.6 | 5.55 | 34.34| 1.02 1.83 .577 0.563
9b [1.024 1.00 7.7 190.6] 5.81 | 33.98| 1.01 1.80 -561
1la |1.024 | 1.00 8.1 | 201.2 5.83 | 34.51| 1.10 1.95 -564
12a |1.024 1.00 9.1 | 226.1| 6.71 | 33.70] 1l.24 2.18 -569
l4a |1.024 1.10 5.6 | 126.4| 3.66 | 34.54] 0.98 1.50 0.653
15a |1.024 1.10 6.7 151.2 | 4.44 | 34.05] 1.23 1.87 .658
16a |1.024 1.10 7.8 | 176.1] 5.13 | 34.33| 1.38 2.13 .648 0.652
17a |1.024 1.10 8.9 | 200.9| 5.76 | 34.88( 1.64 2.50 .656
18a |1.024| 1.10 10.0 | 225.7 6.79 | 33.24( 1-.80 2.80 .643
20a |1.024 1.20 6.1 125.9 4.36 28.88 | 1.50 1.79 0.838
2la |1.024 1.20 7.3 | 150.7| 5.31 | 28.38] 1.76 2.16 .815 0.818
22a |1.024 1.20 8.5 175.4 | 5.96 | 29.43| 2.00 2.50 .800
23a [1.024 1.20 9.7 200.2 6.83 | 29.31| 2.39 2.90 .824
24a |1.024| 1.20 10.9 | 225.0| 7.65 29.41 | 2.62 3.22 .814
27a (1.024 1.30 6.6 | 125.3| 5.84 | 21.46| 1.68 1.67 1.006
27b |1.024 1.30 6.6 | 125.3 ~——= | —===- 1.72 1.71 1.006 1.003
28a |1.024| 1.30 9.9 188.0 | 9.01 | 20.89 | 2.57 2.56 1.004
28b [1.024 1.30 9.9 188.0 memm | meme- 2.67 2.68 .996
38a |0.536| 0.90 4.6 127.6 | 4.09 | 31.20 ]| 0.34 0.69 0.493
39a .536 .90 5.5 152.6 | 4.97 30.70 .42 .84 .500
40b .536 1.00 5.1 | 126.7 3.59 35.29 .57 1.01 .564
4la .536 1.00 6.1 | 151.5 | 4.44 | 34.12 .13 1.30 -562
42a .536 1.10 5.6 |126.4 N T .91 1.37 .664
43a .536 1.10 6.7 151.2 | 4.67 32.38 | 1.13 1.70 .665
448 .536 1.20 6.1 |125.9 e et 1.33 1.60 .830
45a .536 1.20 7.3 |150.7 | 5.48 | 27.50| 1.58 1.95 .810
47a -536 1.30 6.6 125.3 e B 1.57 1.57 1.000
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Figure 2. - Diagram illustrating geometric principles of light flux
measurement. Conditions: R >> d; 6 small enough that 6 = tan 6.
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NACA RM E54F29

(a) Relative sensitivity of photomultiplier tube.

(b) Percent transmission of blue filter.

(c) Percent transmission of yellow filter.

—
OH CH C-C

(&) Location of band spectra in propane-air flame.

Il Il L 1 1 | i 1 i | | i i 1 J

.28 .30 .40 .50 .58

Wave length, pu

Figure 4. - Optical properties of photomultiplier tube, filters, and

propane-air flames used in radiant flux measurements.
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Figure 5. - Varlation of laminar flame intensity with fuel flow.
Burner diameter, 1.024 centimeters.
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Figure 5. - Concluded. Varlatlcn of laminar flame intenelty
with fuel flow. Burner diameter, 1.024 centimeters.
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Radlation intensity, upamp
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Figure 6. - Concluded. Variation of laminar flame intensity with flame surface area.

dlameter, 1.024 centimeters.
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Figure 9. - Variation of laminar flame Intensity with fuel
flow for several burners. ZEquivalence ratio, 1.00;
yellow filter,
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Figure 10. - Variation of laminar and turbulent flame intensities
with fuel flow. Yellow filter; burner diameter, 0.536 centimster.
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